If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-0.6x-2.96=0
a = 1; b = -0.6; c = -2.96;
Δ = b2-4ac
Δ = -0.62-4·1·(-2.96)
Δ = 12.2
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-0.6)-\sqrt{12.2}}{2*1}=\frac{0.6-\sqrt{12.2}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-0.6)+\sqrt{12.2}}{2*1}=\frac{0.6+\sqrt{12.2}}{2} $
| P(x)=35x-20x+500 | | –10x−15x−–10x+–14=16 | | e+4*6=48 | | 6x+5x-5=2x-8 | | -50+6•x=-8+5•x | | u(u−5)=0 | | 6(h+-6)=48 | | 2a+a+a+3a+a=8 | | 4(m+7)=3m-5 | | 5/9=m/27 | | 1x(x)=8x12 | | 4v+24=-12 | | 6=10-2f | | 4x-10=7x+5x+10 | | 9x-10=-3x+20 | | 14y-9y-7=54.05 | | p/6+3=12 | | 3x2−16x=x2−30 | | -10+4x=54.33 | | -10x+5=-11x+6 | | 5s-19=-9 | | p/5-3=2 | | 2x+8=3+2x* | | j/7+26=32 | | /3(2x-1)+2=5x | | q/3=40 | | -11=-8-j/13 | | -6x-1,4=2,2 | | q/3=47 | | (x-16)*4=50 | | 4=(12x-7x) | | 4(p-88)=44 |